Brief information about the project

Name of the project	AP09058656 «Development of scientific foundations of
	metal complex hydroalkoxycarbonylation of C ₄ -C ₁₀
	olefins of oil refining»
Relevance	The problem of rational use of large-scale by-products of
	oil refineries (OR) - C_4 - C_{10} olefins of process gases - is
	very relevant and has great practical significance.
	The Project proposes the development of the scientific
	basis for the synthesis of practically valuable esters of
	carboxylic acids by carbonylation of C_4 - C_{10} olefins of OR
	process gases with carbon monoxide and alcohols in the
	presence of metal complex catalysts at low pressure of
	carbon monoxide.
Purpose	To develop the scientific foundations of metal-complex
	hydroalkoxycarbonylation of C ₄ -C ₁₀ olefins of petroleum
	refining used for the synthesis of practically valuable esters
	of carboxylic acids – biologically active drugs, scented
	substances, solvents, etc.
Objectives	Task I. Development of highly efficient catalytic systems
	based on transition metal complexes with
	organophosphorus ligands and various stabilizers and
	budroelkowyoorbonylation of C. C. clafing under mild
	invariants of the process (CO) pressure not higher than 2.0
	Conditions of the process (CO pressure not higher than $100 ^{\circ}\text{C}$)
	Task II Determination of optimal parameters of the
	hydroalkoxycarbonylation reaction of C4-C10 olefins at
	low carbon monoxide pressures (< 2.0 MPa) in the
	presence of developed effective catalytic systems based on
	transition metal complexes with organophosphorus ligands
	and various stabilizers and promoters have been
	determined. The kinetics and mechanism of the reaction
	under study are investigated.
	<i>Task III</i> . Possibilities of reuse of metal-complex catalysts
	for the reaction of hydroalkoxycarbonylation of olefins
	and methods of their regeneration to reduce the cost of the
	process.
	<i>Task IV.</i> To develop standard laboratory and technological
	regulations for the production of practically valuable
	aromatic substances based on carboxylic acid esters from
	olefins of oil refining process gases.
Expected and achieved results	Expected results:
	- 2 articles will be published in international peer-reviewed
	journals from the first three quartiles (Q1, Q2, Q3) of the
	Web of Science database.
	- 3 articles will be published in journals recommended by
	the Committee for Quality Assurance in Education and
	Science of the Ministry of Education and Science of the
	Kepublic of Kazakhstan (CQASE ME KK)
	- One textbook will be published in the publishing house "Ograd Universiteti"
	Qazaq Universiteti

- One document of protection will be received in the form of a Patent of the Republic of Kazakhstan

Achieved results:

- For the first time, the comparative catalytic activity of a number of Pd phosphine complexes and free ligands in three-component reaction systems of hydroethoxycarbonylation of octene-1 was carried out, and optimal conditions (T= 120^{0} C, P_{CO}=5.0 MPa, τ =5 hours) of the process in the presence of the PdCl₂(PPh₃)₂-PPh₃-AlCl₃ system were determined, under which the yield of the target products reached 88.5%.

The catalytic activity of the three-component PdCl₂(PPh₃)₂-PPh₃-AlCl₃ system containing AlCl₃ as a promoter been established has in the hydroethoxycarbonylation reaction of pentene-1. The reaction proceeds with the formation of two isomeric products of linear (ethyl ether of capronic acid (EECA)) and branched structure (ethyl ether of 2-methylvaleric acid (EE-2-MVA)). Optimal reaction conditions were found under which the yields of the target products (the sum of isomeric esters of EECA and EE-2-MVA) reached 74.72%.

- The activity of various alcohols in the reaction of hydroalkoxycarbonylation of hexene-1 in the presence of two catalytic systems has been studied: 1. Pd(PPh₃)₄-PPh₃-TsOH (menthol, cyclohexanol, ethanol, propanol, isopropanol, butanol, isobutanol, benzyl alcohol) and 2. PdCl₂(PPh₃)₂-PPh₃-AlCl₃ (ethanol, propanol-1, butanol-1, isoamyl alcohol, isobutanol, pentanol-1, allyl and tretbutyl alcohol). The optimal parameters of the process (temperature, pressure and reaction duration) for the and of hydropropoxycarbonylation reaction hydrobutoxycarbonylation of hexene-1 have been established at which the yields of the target products reach 91.78% and 91.55%, respectively.

- The activity of the PdCl₂(PPh₃)₂-PPh₃-AlCl₃ catalytic system containing AlCl₃ as a promoter in the cyclohexene hydroethoxycarbonylation reaction was investigated, optimal parameters were determined: $[C_6H_{10}]:[C_2H_5OH]:[Pd]:[PPh_3]:[AlCl_3] = 870:435:1:6:8$, $P_{CO} = 2.5$ MPa, T = 120 °C, $\tau = 6$ h. With these parameters, the yield of cyclohexanecarboxylic acid ethyl ether was 85.2%.

The optimal the cyclopentene _ parameters of hydroethoxycarbonylation process by the threecomponent PdCl₂(PPh₃)₂-PPh₃-AlCl₃ system have been determined. At the molar ratio of the initial reagent $[C_5H_8]:[C_2H_5OH]=2:1$, with a molar ratio of the component of the catalytic system [Pd]:[PPh₃]:[AlCl₃] in a ratio of 1:6:10 and at T=120 °C, $P_{CO} = 25$ atm. and with duration reaction of τ =6 hours. a

	vield of 75.74%.
	- The mechanism of the hydroethoxycarbonylation
	reaction of cyclohexene in the presence of a three-
	component $PdCl_2(PPh_2)_2 - PPh_2 - AlCl_2$ catalytic system is
	proposed
	Laboratory and technological regulations for the
	- Laboratory and technological regulations for the
	the reaction of hydroethowyconhonylation of avalabayang
	in the maximum of DICL (DDL) DDL AICL sectors have
	in the presence of PdC1 ₂ (PPn ₃) ₂ -PPn ₃ -AlC1 ₃ system have
	been developed.
Research team members with their	The scientific director of the project is <i>Kudaibergenov</i>
identifiers (Scopus Author ID,	Nurbolat Zharylkasynuly (<u>https://orcid.org/0000-0002-</u>
Researcher ID, ORCID, if	4641-6779), Doctor of Philosophy (PhD) in chemistry.
available) and links to relevant	Zhaksylykova Gulbanu Zhaksylykovna
profiles	(<u>https://orcid.org/0000-0003-2390-0688</u>), candidate of
	chemical sciences.
	Kanapieva Fatima Mukhidinovna
	(<u>https://orcid.org/0000-0002-9829-3117</u>), Candidate of
	Chemical Sciences.
	Zykay Meruert Halykkyzy (https://orcid.org/0000-0002-
	4853-9983), Candidate of Chemical Sciences.
	<i>Pietrobon Luca</i> . Currently he is a PhD candidate at the Ca'
	Foscari University of Venice (Italy, Venice).
	Meirbekov Nurkanat Ayazbayuly (https://orcid.org/0000-
	0001-6440-3544), Master of Engineering and Technology.
	1st year PhD student in the specialty "Chemistry" of al-
	Farabi KazNU
	Mamyrkhan Diana Batyrkhankyzy, 1st year master's
	student in the specialty "Petrochemistry" of al-Farabi
	KazNU
List of publications with links to	For 2021
them	1. Kudaibergenov, N.Zh., Shalmagambetov, K.M.,
	Vavasori, A., Zhaksylykova, G.Zh., Kanapiyeva, F.M.,
	Almatkyzy, P., Mamyrkhan, D.B., & Bulybayev, M.
	(2021) The use of Lewis acid AlCl3 as a promoter in the
	Pd-complex catalytic system of the Шиклогексен
	гидроэтоксикарбонилирование reaction. Bulletin of the
	University of Karaganda – Chemistry, 102(2), 8-17.
	https://doi.org/10.31489/2021Ch2/8-17
	2 Bulybayey M E. Almatkyzy P. Mamyrkhan D B
	Kalen G. Zhaksylykova G Zh. The use of alcohols in pd-
	complex catalyzed system for the
	hydroethoxycarbonylation of hexene-1 // Proceedings of
	the 11th International Beremzhanov congress on
	chemistry and chemical technology 2021 P 138-139
	$2 \Delta \text{Imatchield} \Pi \text{Warelineiropa W Cuentria}$
	олефиниј комплекстернин катненина карбонина //
	фосфинда комплекстерина кановида кароонилдеу //
	«Фараои элемі» атты конференция материалдары. –
	12021 C.135.

	 4. Shalmagambetov K.M., Kudaibergenov N.Zh Zhaksylykova G.Zh., Almatkyzy P., Mamyrkhan D.B., Bulybayev M., Esenov A. Carbonylation of olefins by carbonmonoxideand alcohols in the presence of Pd- complexcatalytic system // MATEC Web of Conferences. – 2021. – №340. https://doi.org/10.1051/matecconf/202134001023 For 2022 1. Shalmagambetov K.M., Zhaksylykova G.Zh., Kanapiyeva F.M., Kudaibergenov N.J., Abyzbekova G.M. Ethoxycarbonylation of pentene-1 in the presence of PdCl(PPh3)2-PPh3-AlCl3 system. Chem. J. Kaz., 2022, 3(79), 110-119. https://doi.org/10.51580/2022- 3/2710-1185.84 2. Алматқызы П., Булыбаев М., Кенжаева А., Жаксылыкова Ж. Сызықты олефиндерді әр түрлі спирттермен палладийдің фосфинді комплекстерінің қатысында карбонилдеу // «Фараби әлемі» атты конференция материалдары. – 2022. – C.109. For 2023 1. Zhaksylykova G. Zh., Shalmagambetov K. M., Kudaibergenov N. Zh., Kanapieva F. M., Bulybaev M.E., N. Bolatkyzy, A. Azimbay. Hydroethoxycarbonylation of cyclopentane in the presence of a three-component PDCL2(PPH3)2-PPH3-ALCL3 system. Heфть и газ. 2023. №3. C.139-152. https://doi.org/10.37878/2708- 0080/2023-3.11 2. Zhaksylykova G. Zh., Bolatkyzy N., Bulybaev M.E., Orynbassar B.K., Appaz A.N., Beibitbek G. Investigation
	of the activity of catalytic systems based on Ni and Co complexes in hydroalkoxycarbonylation reactions. IX International Russian-Kazakhstan International Conference "Chemical Technology of Functional Materials". May 25-27, 2023. P. 239.
	3. Kairzhan Shalmagambetov, Andrea Vavasori, Gulbanu Zhaksylykova, Fatima Kanapiyeva, Meruyert Zykay, Nurbolat Kudaibergenov. Lewis acids as co-catalyst in Pd-based catalysed systems of hydroethoxycarbonylation reaction of octene-1 // Open Chemistry. 2023. №21. 20230156. DOI: <u>https://doi.org/10.1515/chem-2023-0156</u> 4. Zhaksylykova, G.; Shalmagambetov, K.; Kanapiyeva, F.; Kudaibergenov, N.; Bulybayev, M.; Zvkai. M.: Abyzbekova.
	G.; Balykbayeva, G. The Role of Alcohols in the Hexene-1 Hydroalkoxycarbonylation Reaction with Catalysts Based on Palladium Complexes. <i>Catalysts</i> 2023, 13(12), 1507; https://doi.org/10.3390/catal1312150
Patents	Способ получения этилового эфира циклогексанкарбоновой кислоты. Шалмагамбетов К. М., Жаксылыкова Г. Ж., Канапиева Ф.М., Кудайбергенов Н.Ж., Мамырхан Д.Б. Патент на полезный модель РК. № 6933. 11.03.2022.

